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ABSTRACT
Automatic Music Transcription (AMT) is the process of extracting
information from audio into some form of music notation. This chal-
lenging task requires significant prior knowledge and understand-
ing of music language. In this paper, we examine Transformer-based
approaches for performing AMT on piano recordings by learning
music language representations.We propose a newMusic Language
Modelling (MusicLM) pre-training approach for Transformers. It is
based on an appropriately defined transcription error-correction
task, and enables transfer learning for various musical tasks. Fur-
thermore, a novel model for AMT is proposed that appropriately
exploits a BERT Transformer for the MusicLM problem, showing
the potential of transfer learning from Natural Language to Musi-
cLM. We apply the Transformer on a Masked MusicLM task, and
achieve musically coherent results. We also replace the RNNs used
in current AMTmodels with pre-trained BERT-based Transformers,
achieving improvements in AUC.

CCS CONCEPTS
• Information systems → Content analysis and feature selec-
tion; • Computing methodologies → Neural networks; Trans-
fer learning.
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1 INTRODUCTION
Automatic Music Transcription (AMT) concerns the process of auto-
matically converting an audio signal to a high-level representation
of the musical information present in it. When musicians perform
transcription of music, they listen to the audio and use some form
of music notation to generate a human-readable representation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SETN 2022, September 7–9, 2022, Corfu, Greece
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9597-7/22/09. . . $15.00
https://doi.org/10.1145/3549737.3549754

of that audio (Figure 1). Another musician can then use this rep-
resentation to perform the music, by interpreting this notation.
A subfield of Music Information Retrieval (MIR), AMT has been
studied extensively [5, 6, 9, 10, 14, 18–20] due to its applications in
musical analysis, teaching of music, annotation and others [6].

(a) Audio wave

(b) Sheet music

Figure 1: Transcription involves the extraction of musical in-
formation from sound (a) and its transfer to human-readable
music notation (b).

Music Language Modelling [18], dubbed MusicLM, can be seen
as the musical equivalent of language modelling in Natural Lan-
guage Processing (NLP). By modelling the language of music, and
specifically its temporal, melodic, rhythmic and harmonic structure,
as well as emergent patterns and repeated passages, we can not only
obtain better understanding, but also create better representations
and abstractions. This is an essential step towards solving various
MIR problems while in the context of AMT, it can allow the predic-
tion of more realistic transcriptions [14], improving transcription
accuracy and increasing the confidence of model predictions.

Transformer architectures [22] have introduced great improve-
ments in a variety of sequence modelling problems, showing robust-
ness in each particular application and transfer learning potentials.
This is done by fine-tuning pre-trained models to achieve state-of-
the-art performance in NLP and Speech Recognition applications,
using only a fraction of resources required by previous approaches,
such as available data, time and computational power [2, 7, 8].

The primary motivation for this work is the study and use of
Transformer-based NLP language models in an end-to-end AMT net-
work. Considering the parallels between natural and music lan-
guage, our intuition is that Transformers can replace RNN-based
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models currently used for AMT. Besides possible performance ben-
efits, Transformers are advantageous over previous sequence mod-
elling architectures due to their attention mechanism that can be
used to visualise the sequence elements that attribute most to the
prediction [23]. This in turn can provide valuable insights regarding
the model’s decision process [1] and potentially lead to explainable
models. The main contributions of this work are the following:

(1) We investigate the potential of transfer learning from natural
language to tasks related to music, by evaluating BERT [8]
for the task of Music Language Modelling.

(2) We propose a novel musical note denoising objective, which
can be used as music transcription error detection/correction
task for pre-training.

(3) We propose a novel Transformer-based AMT model that
surpasses in AUC the baseline RNN models.

The rest of this paper is organized as follows: Section 2 introduces
the current RNN-based architectures for AMT as well as existing
Transformer architectures used in musical tasks. Section 3 intro-
duces the dataset used in this work and details our proposed ap-
proaches, while in Section 4 we explain our experimental setup.
Finally, in Section 5 we present the experimental results of this
study, and in Section 6 we provide conclusions and future work
directions.

2 RELATEDWORK
In the field of AMT, most current architectures use Recurrent Neu-
ral Networks (RNNs) for modelling musical sequences. Hawthorne
et al. [10] introduced the Onsets and Frames (O&F ) model, which
jointly learns to predict note activations as well as note onsets.
It has one convolutional stack followed by a bidirectional Long-
Short TermMemory (BiLSTM) [17] per task, and then uses the joint
outputs to make the final frame activation prediction using an ad-
ditional BiLSTM layer, as can be seen in Figure 2 (a). They followed
up this work with [12], which introduced a few modifications, most
notably an offset detector stack and a larger embedding dimension,
as well as a new dataset for AMT training and evaluation. Another
noteworthy work was published by Kim and Bello [14], who ex-
tended the O&F architecture by using a Generative Adversarial
Network step after the prediction was acquired, in order to learn to
output more realistic predictions.

The Music Transformer [13] is a Transformer model trained on
the task of harmonizing a melody, which entails predicting the
notes sang by the bass, tenor and alto given the notes sang by the
soprano. It uses a sparse, MIDI-like representation of music, and
employs relative attention. Wave2Midi2Wave [12] builds on the
Music Transformer by introducing a WaveNet model for generat-
ing audio from the symbolic representations. It also uses the O&F
transcription model to work with raw audio as its input, and shows
that an AMT model can be used to provide music representations
for pre-training a Transformer by predicting future notes. Recently,
Hawthorne et al. [11] proposed a novel Transformer-based model
for AMT, adapted from the Music Transformer, which achieved new
state-of-the-art results. In this work, we consider an unmodified,
pre-trained NLP BERT Transformer as our Music Language Model,
and use it as a drop-in replacement for RNNs.

3 MUSIC LANGUAGE MODELLING
In this section, we introduce the dataset used in this work and
describe our contributions and methodology for pre-training and
evaluating a BERT Transformer for MusicLM tasks. Finally, we
describe how we integrate it into our AMT model.

3.1 MAESTRO Dataset
The MAESTRO (MIDI and Audio Edited for Synchronous TRacks
and Organization) [12] is a music dataset containing about 200
hours of piano performance audio recording and MIDI pairs, finely
aligned. We use the specified train/validation/test split provided
by the authors, which contain 96.3/11.8/12.1GB of performances
respectively. More details regarding the dataset files are provided
in Appendix A.

In order to produce the frame labels, we use a piano roll repre-
sentation. The piano roll is a tensor of shape (𝑁𝑓 𝑟𝑎𝑚𝑒𝑠 ×88), where
each frame corresponds to 𝑟 input audio samples in its receptive
field and contains the note information for that time frame. Each
frame is a vector of size 88, with each element being an integer (1
for onset, 2 for inside, 3 for offset) as in O&F. Each frame’s receptive
field is spaced by hop_length samples from the next frame.

The input to the AMT models is a vector of 𝑁𝑓 𝑟𝑎𝑚𝑒𝑠 · 𝑟 audio
samples. A preprocessing step is always performed to produce amel-
spectrogram representation of the input, using the same parameters
as in the O&F model.

3.2 Evaluating BERT for Music Language
Modelling

We introduce a novel text representation of the input frames, and
define a Masked Music Language Modelling (MMLM) task, similar
to the Masked Language Modelling task used in NLP (hereafter
MNLM). We then describe how we can bypass the tokenization step
and pass the input frames directly as embeddings, in order to make
the model trainable end-to-end.

In order to use BERT for MusicLM, we transform each frame into
a string literal in order to train and use a standard text tokenizer
on the music representations. That is, each integer in a frame is
turned into a character. A sentence is then a sequence of string
representations of frames, separated by a whitespace character.

Training a tokenizer on a dataset of such sentences yields words
(string representations of frames), subwords (strings representing
patterns of active and inactive notes, for example “10001” to repre-
sent a major third interval) and special tokens such as the start and
end of a sentence, unknown and mask tokens.

A problem we encountered is that the language of piano music,
unlike natural languages, such as English, has a vocabulary too
large to fit in memory (288 possible words or frame states). However,
the overwhelming majority of these states are extremely unlikely
to occur (for example, states with more than 10 notes or with notes
with large distances between them) and do not show up in datasets.

Including the musical pause, few tokens are present in most of
the training dataset. The most common tokens after the musical
pause are those that correspond to only one note being played. This
means that the dataset is very sparse, with orders of magnitude
more negative (note off) than positive (note on) samples per frame.
The total number of unique tokens in the training set is 885,768.
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For our purposes, we trained a BERT (base) model with anMNLM
head by using only a subset of the vocabulary consisting of the
𝑁 -most frequent tokens. We tried 𝑁 ∈ {2,000, 10,000, 50,000} but
found no difference in the performance of the network. Thus, we
opted for the lowest number to speed up the training procedure.

Preliminary evaluation on masked predictions on unseen music
sequences showed that both model performance in the per-frame
𝐹1 score and the subjective measures of listening for how realistic
the predicted sequences are, offer promise that the model is well
suited for MusicLM. The problem with this approach is that for
an AMT model, the string encoding step is not differentiable as
a thresholding step is required between the continuous outputs
of the activation estimator and a language model. Although there
exist approaches to make the process differentiable, such as in
[3], we consider a simpler solution. We remove string encoding
and tokenization altogether and instead pass the input frames as
embeddings directly, bypassing BERT’s internal learned lookup
tables that transform the input token IDs into embedding vectors.
This approach worked well and within a few epochs the model
achieved an 𝐹1 score higher than 90%.

3.3 Training BERT for MusicLM
We introduce an appropriately defined pre-training task for Musi-
cLM based on transcription error correction. We extend the O&F
model with a BERT Transformer pre-trained on this task in or-
der to improve its transcription accuracy by detecting and fixing
transcription errors.

Notes typically span multiple time frames and exhibit overlap,
while sentences are not clearly defined in music. Hence, MNLM and
next sentence prediction (NSP) may be suitable objectives for NLP
tasks, but not for AMT. This observation motivated our investiga-
tion for the development of a BERT pre-training objective suitable
for AMT. We have considered a note denoising objective, by intro-
ducing noise in the input that imitates transcription errors. To our
knowledge, this is the first attempt at creating a music transcription
error detection/correction objective.

The addition of noise is made per frame. Each active note has
a 𝑝1 chance of becoming inactive, and each inactive note has a
𝑝2 chance of becoming active. We empirically set these values to
50% and 10% respectively, by following the typical transcription
error distribution. We have observed that False Negatives are more
frequent, because a typical classification error occurs when some
of the simultaneously active notes are missing. False positives may
also occur when other similar notes are activated. This may occur,
for example, when a note contains harmonics of the same frequency
as the False Positive. Negative samples are also vastly more common
than positive samples.

Our BERT decoder consists of a fully connected layer added on
top of BERT base, which outputs a sequence of frames. No other
BERT pre-training objective was used besides our denoising one.
At the base of the network, another fully-connected layer is added
in order to transform the input noisy frames into embeddings of
the same size as the ones that BERT uses internally.

We integrated the above transcription error correction module
as an extra module on top of the O&F model, which is used as
an encoder (encoding audio into a music representation). For the

purpose of evaluating the efficacy of the model, we completely
freeze the weights of the encoder and only fine-tune the decoder.
However, since the inputs of the decoder match the outputs of the
encoder, this model could also be fine-tuned or re-trained end-to-
end. We call the resulting pre-trained decoder module as TEC-BERT.
The architecture of the model is shown in Figure 2 (b).

3.4 The Orpheus model for AMT
We propose a novel model based on the O&F architecture, for AMT.
We keep the pre-processing of the raw audio into amel-spectrogram
[21], replace O&F ’s BiLSTM layers with BERT Transformers in an
attempt to improve the music language modelling part of the model,
and adjust the architecture so that the model does not get too large
for our experimental system (Appendix B). We will hereafter refer
to this model as Orpheus. The architecture of the Orpheus model is
presented in Figure 2 (c). The differences between our model and
the O&F model are outlined as follows:

• We use a common convolutional stack (ConvStack) and pre-
trained BERT encoder for the Onset and Offset predictors,
whereas the O&F model uses two separately trained ConvS-
tack and RNN encoders.

• We introduce a fully connected (Linear) layer that transforms
the outputs of the Onset and Offset predictors and the Acti-
vation estimator into the appropriate embedding dimension
for the BERT decoder.

• We replace the RNN decoder with a pre-trained BERT de-
coder before the the final layer of the model.

4 EXPERIMENTS
4.1 Performance Metrics
The metrics used to evaluate AMT model performance are the same
as in [10], first described by Salamon et al. [16], with the addition
of an Area Under the receiver operating characteristic Curve (AUC)
metric, which unlike the 𝐹1 score is classification threshold-agnostic.
We present below all the metrics used:

• Frame Precision/Recall/𝐹1: a true positive is a note that was
predicted correctly as active at that time frame;

• Note Precision/Recall/𝐹1: a true positive is a note whose
offset is detected within ±50𝑚𝑠 of the ground truth and its
frequency is found within 50 cents of the ground truth;

• Note with offset Precision/Recall/𝐹1: same as the note met-
rics, but the note also has to have an offset value within 20%
or ±50𝑚𝑠 of the ground truth, whichever is larger;

• AUC: integral of the ROC curve, where a true positive is
calculated as in the per frame metrics.

4.2 Experiment Setup
As a baseline, we trained a complete O&F model, extended to intro-
duce the improvements and modifications described by the authors’
follow-up work [12], for 640,000 steps (mini-batches) in our own
setup. The baseline architecture is shown in in Figure 2 (a).

Both the proposed model Orpheus, the baseline and the baseline
extended with a TEC-BERT module are trained for the same number
of steps, although our ownmodels are trained for a lower number of
total epochs due to the smaller batch sizes compared to the baseline,
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(a) Onsets and Frames (O&F ) model (b) O&F extended with our TEC-BERT decoder module

(c) Our Orpheus model

Figure 2: Comparison of the Onsets and Frames (O&F ) model used as our baseline, O&F extended with our TEC-BERT decoder
module, and our Orpheus model.

as they are much larger. Appendix B contains the specifications of
the system used to conduct the experiments.

During experimentation, we found that most models were very
sensitive to the note-on threshold 𝑡ℎ𝑛𝑜𝑡𝑒 , which is the threshold of
a predicted probability resulting in a note being classified as active.
Models with Transformer decoders seemed particularly sensitive to
this threshold. We also define an onset threshold 𝑡ℎ𝑜𝑛𝑠𝑒𝑡 that also
affects performance.

We tuned the thresholds per model on a validation set. As 𝑡ℎ𝑛𝑜𝑡𝑒
and 𝑡ℎ𝑜𝑛𝑠𝑒𝑡 ∈ (0, 1), we begin at 0.01 and increment by 0.01 until
we reach 0.99. We keep 𝑡ℎ𝑜𝑛𝑠𝑒𝑡 fixed for a whole pass over the range
for 𝑡ℎ𝑛𝑜𝑡𝑒 , then increment 𝑡ℎ𝑜𝑛𝑠𝑒𝑡 and pass over the whole range of
𝑡ℎ𝑛𝑜𝑡𝑒 again, and repeat until all combinations of threshold values

are covered. The best score observed on the validation set is used
to select the optimum thresholds per model.

5 EXPERIMENTAL RESULTS
5.1 Music Language Modelling
Prior to assessing AMT performance (Sec. 5.2), an empirical evalua-
tion was conducted to provide a subjective assessment of BERT for
MusicLM. Our experiments show that BERT trained with a MNLM
task adequately learns to predict musical sequences, even generat-
ing subjectively more musically pleasing and interesting sequences
than the ones artificially created for the experiments.
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(a) Ground truth (masked notes in blue).

(b) Topmost prediction: same as the chord that follows (imperfect fall).
Presumably, this is the top prediction because it puts the I chord in the
key of C in a strong position in the measure.

(c) Second prediction: E♭ and G, inferred as a C minor (borrowed) chord
in the key of Cmajor, or a suspended dominant chord (V, VII) in the key
of Eminor that is solved into the VI of the scale.

Figure 3: The two top MMLM predictions (b,c) on masking
the V chord of a perfect fall in the key of C major (a).

(a) Ground truth (masked notes in blue).

(b) Topmost prediction: repeat/continuation of previous chord, the VI
of the C major scale with the subtraction of the third. It can also be
inferred as the I in the key of A natural minor, as it appears in a strong
position of the measure.

(c) Second prediction: IV or II which are subdominant chords of the C
major scale (imperfect fall).

Figure 4: The two top MMLM predictions (b,c) on a musical
sequence in the key of C major (a).

We observed that the BERT Transformer model trained on the
Masked Language Modelling task produced believable musical se-
quences on the MMLM task. Figures 3 and 4 provide illustrative
results where although MMLM is not given any information about
the key, it predicts chords that adequately fit the context. In Fig-
ure 3, MMLM suggests an imperfect fall (b), putting the I chord

in the key of C in a strong position in the measure. This is fairly
standard in music as the I chord usually sits in a strong position in
the measure, and imperfect falls are far more common than perfect
falls. Interestingly, the second prediction is a chord that does not
belong to the key of C. A different context was assumed by the
model, producing a far more interesting and auditorily pleasing
result with the E♭ note resolving up to E natural. This can be ex-
plained by music harmony as either a C minor borrowed chord in
the key of C major, or as a suspended dominant chord in the key
of E minor. In Figure 4, MMLM suggests either a continuation of
the previous chord (b) or an imperfect fall (c). The aforementioned
findings show MMLM’s ability to predict chords that are justifiable
with music harmony, even in very small sequences, reflecting the
model’s ability to infer musical context.

Figure 5: Transformer further pre-training results. Using
a noisy input, our model learns to correct the errors and
output a more realistic transcription. Green, light green, red
and blue in the lower right picture represent TPs, TNs, FPs,
and FNs respectively. There are very few FPs.

On the noisy input training task, the TEC-BERT model produces
clean predictions on the test set. Figure 5 presents a visualization
of the noisy input, prediction and ground truth. It can be observed
that the model learns to output realistic transcriptions and makes
few mistakes given a noisy input.

When initialized with the base (natural language) uncased pre-
trained checkpoint, BERT learned and performed better than a
randomly initialized version on the task of denoising music input.
This might mean that there is at least some transfer learning po-
tential from NLP to MusicLM. Table 1 shows the test set results
of an NLP pre-trained model versus a randomly-initialized model.
The per-note metrics are lower because of the high probability of



SETN 2022, September 7–9, 2022, Corfu, Greece Zonios et al.

setting the onset to zero, making it very hard for the model to detect
it in the allotted frames.

5.2 Automatic Music Transcription
Table 2 shows the experimental results for AMT while Figure 6
presents a comparison between the predictions of the baseline
model (O&F ), O&F extended with our TEC-BERT decoder module,
and our Orpheusmodel. Illustrative visualizations of predicted prob-
abilities and errors can be found in Appendix C. By extending the
O&F model with a TEC-BERT decoder, we find that no additional
benefit is gained over the threshold-tuned baseline model. How-
ever, its predictions are more confident compared to the ones of
the baseline, as can be observed in Figure 6.

It can be observed that Orpheus achieves the best AUC. However,
it achieves a lower Precision and Recall. This hints that it is able
to provide better transcription probabilities than the baseline, but
is more sensitive to thresholding, and may benefit from a different
thresholding approach.

The addition of our TEC-BERT decoder appears to provide com-
parable performance with the baseline model, while having the ad-
vantage of being able to be pretrained separately. Moreover, possible
advances in the pretraining tasks and Transformer architectures for
MusicLM might directly translate to increase in AMT performance.

6 CONCLUSIONS
We have investigated and shown that a BERT model, pre-trained
for natural language tasks, is suitable as a fine-tuning starting point
for music language modelling. Also, there is evidence of transfer
learning potential between natural and music language.

When replacing Bidirectional Long-Short Term Memory layers
in a current O&F AMT model with a BERT-based Transformer, the
resulting (Orpheus) model is able to learn contextual representations
and achieves a transcription accuracy on par with the state of the
art.

More specifically, we were able to approach in all metrics, and
surpass in AUC, the RNN-based baseline. We consider this an ad-
vancement that enables the transfer learning and explainability
benefits of Transformers for Music Information Retrieval and Mu-
sic Language Modelling problems.

Future work will comprise more Transformer architectures, such
as T5 [15] used in [11], or the Longformer [4] which can model
significantly longer sequences, to assess their music language un-
derstanding capabilities. The proposed decoder pre-training ap-
proach could be augmented by appropriately designing input noise
to more closely mimic transcription errors. As Transformers are
particularly sensitive to note-on thresholds, we expect that more in-
telligent thresholding techniques may provide more robust models
in the future. This might be achieved by jointly training a thresh-
olding submodule, or using additional losses and techniques to
force the network to predict probabilities closer to 0 and 1. Finally,
a novel music notation tokenization method, perhaps based on
the representations used in the Music Transformer but compatible
with absolute positional embeddings, would enable pre-training
NLP models such as BERT without compromises. Such a method
is, in our opinion, the key to unlocking the power of Transformer

architectures and enabling new approaches for various MusicLM
tasks.
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Table 1: BERT performance on the music denoising task with different initializations. The NLP initialization refers to the
pre-trained NLP BERT model (specifically, the base-uncased checkpoint).

Frame metrics Note metrics
Initialization Precision Recall F1 Precision Recall F1

NLP 93.32 ± 2.1 88.83 ± 3.2 91.01 ± 2.6 53.83 ± 3.7 39.84 ± 5.3 45.58 ± 4.1
Random 91.42 ± 2.5 73.80 ± 5.7 81.60 ± 4.4 12.96 ± 2.8 17.86 ± 3.0 14.88 ± 2.5

Table 2: Model performance on the MAESTRO test set, using Precision (P), Recall (R), F1 and AUC. The top two rows comprise
results taken from the respective published studies, where no AUC was reported.

Frame Note Note w/ offset
Model P R F1 P R F1 P R F1 AUC
O&F [12] 92.11 88.41 90.15 98.27 92.61 95.32 82.95 78.24 80.50 -
Kim and Bello [14] 93.1 89.8 91.4 98.1 93.2 95.6 83.5 79.3 81.3 -
Reproduction of O&F 92.45 88.71 90.50 97.41 92.76 95.02 83.16 79.23 81.13 99.30
O&F w/ TEC-BERT head 92.27 88.73 90.42 97.44 92.78 95.04 82.93 79.00 80.91 99.02
Orpheus 92.01 83.32 87.38 97.49 86.64 91.71 79.78 70.95 75.08 99.38

(a) Ground truth piano roll (b) Prediction of the O&F model

(c) Prediction of theO&F model extendedwith ourTEC-BERT decoder
module (d) Prediction of our proposed Orpheus model

Figure 6: Comparison of O&F, O&F + TECBert, and Orpheus model predictions

A DATASET AND PREPROCESSING
A.0.1 Audio Files. The audio files are in raw WAVE format. The
librosa library was used to load the audio from the files, using a
sample rate of 16𝑘𝐻𝑧.

A.0.2 MIDI Files. MIDI files contain musical information describ-
ing musical events such as a note turning on at a certain time
with a certain velocity. We use the pretty_midi library in order

to parse the musical information into a piano roll representation as
described in Section 4.

B SYSTEM SPECIFICATIONS
The hardware system used to conduct all experiments reported in
this work was the following:
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Figure 8: O&F model with a TEC-BERT head predictions

Figure 9: Orpheus model predictions

• GPU: 4x NVIDIA GeForce RTX 2080 Ti (1 maximum per
experiment)

• CPU: 2x Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz
• RAM: 96GB (32 maximum per experiment)

C TRANSCRIPTION PREDICTIONS

Figure 7: O&F model predictions

Figures 7, 8 and 9 show piano roll visualizations of the transcrip-
tion performance of our reconstruction of the O&Fmodel (baseline),
the baseline with a Transcription Error Correction BERT head on
top, and our Orpheus model respectively, on a part from the piece
"Fantasy in F-sharp Minor, Op. 28" by composer Felix Mendelssohn.
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