REVOLVER: A Zero-Step Execution Emulation Framework
for Mitigating Power Side-Channel Attacks on ARM64

Christos Zonios, Vasileios Tenentes
Dept. of Computer Science and Engineering, University of loannina, Greece. Emails: {c.zonios, tenentes} @uoi.gr

Abstract—Software and hardware vulnerabilities to power
side-channel attacks (SCA) are hard to detect and mitigate
in systems already deployed in-the-field, because they require
specialized equipment and aligned power traces. In this paper, we
present REVOLVER, a software-based framework that performs
zero-step execution emulation and generates power traces with
instruction-level resolution. REVOLVER is a hybrid emulator,
because part of it runs on the system that it emulates, an actual
ARMG64 platform, and evaluates the power consumption of its
emulated instructions using actual measurements from on-chip
low-frequency power sensors. Such sensors are already present
on many system-on-chips (SoCs). To improve the accuracy
of the collected traces, REVOLVER repeats the execution of
the instructions in a zero-step fashion. To demonstrate the
capabilities of our framework, we show that AES keys can
be recovered by Correlation Power Analysis (CPA) on traces
acquired using REVOLVER, which proves experimentally that
there is a leaking power side-channel in the examined system that
could potentially be exploited by power SCAs. Moreover, we show
how REVOLVER can be used by a security engineer not only to
identify software and hardware vulnerabilities to power SCAs,
but also to design and evaluate mitigation strategies.

Index Terms—power vulnerabilities, side-channel attack, hard-
ware security, cryptography, mobile devices

I. INTRODUCTION

Microprocessors are deployed in a variety of secure systems
that must operate under strict security and privacy standards,
such as supply chain monitoring [1] and privacy information
management systems [2], to name a few. In order to meet
such strict protection requirements, a variety of cryptographic
algorithms is widely used [3] to achieve confidentiality and in-
tegrity of information during processing and communications.
However, software and hardware vulnerabilities are frequently
exploited by malicious agents to gain access to privileged
execution modes and uncover secrets, undermining system
security and user privacy.

In order to protect cryptographic operations against privi-
leged attackers and avoid privilege escalation, CPU designers
have integrated hardware for Trusted Execution Environments
(TEEs), such as the Intel Software Guard Extensions (SGX)
[4] on x86 platforms, and TrustZone [5] on Arm devices. TEEs
guarantee the confidentiality and integrity of protected code
and data against malicious attacks that may run not only on
unprivileged, but also on privileged execution mode, such as
a malicious Operating System or a malicious driver.

A widespread type of attack for revealing information is the
side-channel attack (SCA). SCAs first appeared during WWII
[6] and exploit information inherently carried by the physical

implementation of the system that executes the cryptographic
algorithms. In the case of a microprocessor, such physical
quantities exploited by SCAs have been power consumption
[7], electromagnetic radiation [8], time delays [9], faults [10]
and sound [11], to name a few. In the past, SCAs uncov-
ered confidential information about user location [12] and
keystrokes [13], and were used for privilege escalation by
revealing cryptographic keys [14]-[16]. This paper focuses on
identifying system vulnerabilities to power SCAs.

Power SCA techniques start by collecting power traces,
usually with external equipment, of the cryptographic oper-
ation (encryption or decryption). The Simple Power Attack
(SPA) is based on the visual inspection of the collected power
traces, but it can be subjective, tedious, and is easily mitigated.
Automated power SCA methods, such as Differential Power
Analysis (DPA) [7] and Correlation Power Analysis (CPA)
[17], have been developed that statistically process collected
power traces and utilize binary clusters, and Hamming Weight
(HW) with Pearson correlation, respectively, to reveal keys.

Despite the protection of cryptographic execution inside a
TEE against direct privileged execution, software-based SCAs
also exist for TEEs [18]—-[20]. Software-based SCAs do not
require external measuring equipment for obtaining power
traces. On Intel SGX, the PLATYPUS [20] power SCA reveals
keys by utilizing low-frequency (1 kHz up to ~20 kHz) power
measurements available by the Intel Running Average Power
Limit (RAPL) API and single- and zero-step (single instruction
and same instruction execution) execution capabilities of SGX.
On TrustZone, the TruSense SCA [19] reveals keys using tim-
ing information of cache events, and the Load-Step SCA [18]
uses timing information of microarchitectural events obtained
at instruction level resolution using a single-step execution
mechanism engineered by periodic interrupts from an attacker
core to a victim core, as shown in Fig. 1.

To the best of our knowledge, no published software-based
power SCA exists, similar to PLATYPUS [20], on TrustZone.
We argue that a power SCA on TrustZone might already exist
and be deployed in-the-field on actual systems by malicious

Attacker Core (High Frequency)
Privileged execution mode

Victim Core (Low Frequency)

Ready for next

High Frequency Timer instruction

Interrupt Handler

Cross-core

interrupt Secure TEE

Interrupt Generator

Fig. 1: Threat model against TrustZone TEE [18]

threat agents, even though such SCA is not published. There
are, however, already published vulnerabilities, such as the
single-step execution [18], showing that a software-based SCA
on TrustZone is feasible. As power SCAs are not easily
detected, a framework capable of identifying software and
hardware security vulnerabilities of a system to power SCAs
could be very beneficial to security engineers.

In this paper, we propose REVOLVER, a novel software-
based framework that performs zero-step execution emulation
on ARMG64 and generates power traces with instruction-level
resolution. REVOLVER is a hybrid emulator, because part
of it runs on the system that it emulates, an actual ARM64
platform, and evaluates the power consumption of its emulated
instructions using actual measurements from hardware, by
sampling low-frequency on-chip power sensors already present
on many Arm-based chips. By performing zero-step execution
emulation, the proposed framework collects power traces with
instruction-level resolution. Using REVOLVER, we achieve
not only to identify software and hardware vulnerabilities of
the examined system, an actual ARM System-on-Chip (SoC)
running the Advanced Encryption Standard (AES) cipher, but
we also develop a mitigation method. The remainder of this
paper is structured as follows:

In Sec. II, we collect power traces of various instructions,
operands and data, and we prove experimentally that there
is a power side-channel on the examined SoC. In Sec. III, by
examining software implementing the AES cipher, we demon-
strate how REVOLVER can identify software vulnerabilities
to power SCAs. In Sec. IV, we show how a security engineer
can utilize REVOLVER to reveal hardware vulnerabilities of
the examined SoC, and to design and evaluate appropriate
mitigation strategies. In Sec. V, we conclude the paper.

II. SINGLE INSTRUCTION POWER CHARACTERIZATION
A. Platform

We conduct our experiments on the Arm Juno r2 vendor-
neutral development board which implements 64-bit Arm
architecture AArch64 (Armv8-A) and runs Debian Linux with
Kernel version 4.9.0-11. The board operates with an Arm
big. LITTLE SoC similar to those found in many mobile
devices. The SoC integrates two CPU clusters: the “big”
cluster contains two high-performance Cortex-A72 cores, and
the "LITTLE” cluster contains four energy-efficient Cortex-
AS53 cores. The SoC also integrates a GPU. This platform
features integrated Low-frequency Power Sensors (LPS) which
are accessible by software running on the cores through
direct memory access registers. The registers measure current,
voltage and power, as well as cuamulative energy consumption,
for each of the following parts of the SoC: the System (outside
of the clusters and GPU), the Cortex-A72 cluster, the Cortex-
AS53 cluster, and the GPU. The maximum sampling frequency
of LPS in our setup is 10 kHz.

B. Single Instruction Power Characterization Process

Since modern processors such as the Cortex-A72 in our
setup operate in GHz frequencies, it is obvious that the

Instruction,
operands =
{I,A,B}

Execute
instruction

<__ Possible
+side-channel

(b)

Calculate mean
power consumption
of {I,A,B}
Fig. 2: REVOLVER ICP: (a) instruction execution runs on

victim core; (b) LPS sampled on attacker core

Call workload (b) for
{I, A, B} on victim
core

resolution of the power traces obtainable through LPS is
not sufficient to capture single instruction power features. To
alleviate this issue, we execute the single Instruction Charac-
terization Process (ICP) of REVOLVER, shown in Fig. 2. First,
we repeat N,..,s times the execution of the instruction that we
want to characterize with its corresponding operand values
and data (Fig. 2(a)), while continuously measuring power
consumption through LPS. For accessing the LPS registers
a small /dev/mem based access driver is implemented that
runs in privileged execution mode (Fig. 2(b)). Note that in the
examined threat model for TEEs, the attacker runs at privileged
execution mode (Fig. 1). When an instruction is characterized
on a Cortex-A53, the driver is executed on Cortex-A72,
and vice-versa. As the two clusters exist on different power
domains, this way we ensure that the LPS driver execution
is not intrusive to our measurements. After the execution of
the instruction loop, the average power consumption of the
instruction under characterization is obtained by sampling the
cumulative energy sensors. It is Pj,s = Feum/tn, where
P;,s is the average instruction power, E.,,, the cumulative
energy measured by LPS and ¢ the time needed for the loop
execution, which is measured using CPU clock cycle registers.
Similarly, we obtain the energy per instruction Fj;,s using:
Eins = Ecym/Nreps. This process circumvents the problem
of the low sampling frequency of LPS and negates noise of
other running system processes (details in Sec. IV).

C. Distinguishing Instructions and Data

First, we demonstrate that LPS energy measurements col-
lected through the REVOLVER ICP are sufficient to distin-
guish an instruction. Although the ICP can be applied to any
instruction type, we focus on a set of four instructions {UXTB,
MOV, STRB, LDRB} that exist in the AES cryptographic
algorithm implementation, which is discussed in Sec. III.
We collect data on a Cortex-A72 core, using three different
registers and all possible operand data values. Fig. 3(a) depicts
the energy per instruction for instructions UXTB and MOV,
which are applied on register operands. Fig. 3(b) depicts
the energy per instruction for instructions STRB and LDRB,
which are memory store and load byte instructions. Each
instruction is repeated INV,..,,s = 1 billion times and LDRB and
STRB are given fixed address values and the same registers.

1 UXTB 1 | 1 STRB
4
(a) I 1 MoV (b) M LDRB
| 1
I
2 25l |
o N a ‘
@2 (| o] | 1
& S
A J M
[I
0 - ‘ 01— : . .
13 14 15 217 2'8 2’9 30
Energy (J) le—10 Energy ()) le-9

Fig. 3: Energy per instruction distributions for different in-
struction types: (a) byte instructions, (b) memory instructions

lell
104 (a) 1 0x00
i o 0x03
0.8- A AdR 270 oxof
2 W £ 0x3f
iy i [
20.6 [D0 Oxff
0] i
Q0.4+ A
i « \
N i \
0.2 A N
e
0.0 T T == — = ~T T
2.70 2.72 2.74 2.76 2.78 2.80
Energy (J) le—9
le—9
2.750
(b)
2.7451
52.740
(]
C
Wi 2,735 1
2.7301
T T , r T T ; ; r
0 1 2 3 4 5 6 7 8

Hamming Weight

Fig. 4: Energy per STRB instruction: (a) for different operands,
(b) for different Hamming Weights of the operand

We observe that the energy per instruction distributions of all
examined instructions are clearly distinguishable.

In Fig. 4, we examine how the energy consumption of a
single instruction is affected by operand values. We measure
the energy distribution per instruction for five instances of
instruction STRB (Fig. 4(a)). We maintain the memory address
where data is stored constant, and we examine five different
values of 8 bits (1 byte) for each instance. It is evident that
operand values can be distinguished by energy measurements
obtained by REVOLVER ICP. In Fig. 4(b), we present the
average energy per STRB instruction instance, while sweep-
ing the value stored in memory. Values are sorted by their
Hamming Weight, i.e. the number of logic-‘1’ bits. The
near-monotonic line obtained is an indication that execution
information is leaking through core power.

The same observations have been verified on every core of
both clusters in the SoC. These results show that both instruc-
tions and operands can be distinguished by our framework.
This is also a strong indication that information is leaking
through the power sensors, and one of the hardware security
vulnerabilities in our system identified by REVOLVER.

III. PROPOSED ZERO-STEP EXECUTION EMULATION

In this section, we present the proposed zero-step execution
emulation process of REVOLVER. We will demonstrate how
this process allows for the identification of system security
vulnerabilities and the evaluation of mitigation techniques,
using an AES implementation, as a proof-of-concept example.

A. Preliminaries on Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a symmetric
cipher, which uses the same private key to encrypt and decrypt
information, and is shown in Fig. 5. AES encrypts 128 bits
(16 bytes) of plaintext P into 128 bits of ciphertext C' using
a private key. The decryption process is the inverse of the
encryption, as all operations are reversible with the same key.
AES comes in three variants, according to its key length: AES-
128, AES-192, and AES-256.

The encryption process contains several rounds of the same
operations involving the key, the plaintex P and AES internal
state S. K, P and S are organized in 4 x 4 tables (shown in
Fig. 6). Next, the AES rounds are described:

SubBytes: a look-up-table is used to substitute bytes on S.
ShiftRows: on each row, columns are shifted; first row: no
shift, second row: shift left by one, third row: shift left by
two, fourth row: shift left by three (wraparound).
MixColumns: each column of the grid is replaced by its dot
product with a fixed matrix, defined in the standard. The add
operation of the dot product is performed using XOR, and a
finite field multiplication is performed.

AddRoundKey: each key byte is added to the proper byte of
S using XOR after MixColumns is applied. AddRoundKey is
represented with the & symbol in Fig. 5.

I init code: load i, j, (b) I Plaintext P l I Key K l

/I get address of key byte key (a)
KL

/I get address of plaintext P[i][j] & KP = K[0:128]

I/ 1oad Kiil(j] and P[il[j] into /

registers

1. xor S[i][j], KIl{l, PHIL]]

2. uxtb SIi][j], S0 g| P:128bis

3. mov S[il[j], SIi]fi] | C:128bits

4. sitb S[l] B 1o 2
/I ...do this for all bytes in 4 & (i, key bits)
/I then start again with i,.4; E‘

addresses

5. Irdb S[i][j]
6. mov SIi][j], S[i][i] .
/I ...find relative address of SBoy;”
1/ use S[il[j] as index, gel,S2[i}]

7. mov S2[0], Szl

8. strb S2[il]

/i ...do this for all bytes””

1/ go to next stage .~

9. ldrb S2[i][]

SubBytes

ShiftRows

é K

Ciphertext C

Fig. 5: (a) Overview of the AES encryption process; (b) AES
pseudo-assembly, highlighting instructions involving key

Key Plaintext Internal State
Ki | Kio | Kig | Kig Pi | P2 | P | P Si | Siz| Sis | Sus
Ko | Ky | Kas | Ky Py | Py | Pos | Py Sy | S| Sis | Sas
Kar | Koo | Kag | Ky Py | Pso | Pag | Pay Sy | Ss2 | Sis | Su
Kir | Kio | Kig | Ky Par | Pao | Pas | Pas Sit | Suo | Sis | Sus
AddRoundKey | S, =K P, |

Fig. 6: During the AddRoundKey operation, each byte S;; is
calculated using only bytes K;; and P;;

B. Zero-step execution emulation process

In Fig. 7, we present a process, hereafter denoted as zero-
step execution emulation, which is applied on a sequence of
assembly instructions, which consist the emulated program
(EP), shown in Fig. 7(a). The process is separated into two sub-
processes. First, is the zero-step ICP sub-process (Fig. 7(b)),
during which REVOLVER ICP is used to characterize instruc-
tions I and operand values A, B. Pre-characterized {I, A, B}
combinations are stored in a database. The pre-characterization
of the instructions is not mandatory as REVOLVER ICP can
be called on-the-fly on known run-time values. Next is the
execution emulation sub-process (Fig. 7(c)), during which the
sequence of input instructions is emulated in order to compute
their run-time operand values. Note that this sub-process may
run on a different system than the one that is emulated. The
power trace Trp of the emulated program is generated by
retrieving and concatenating the power of all the instructions
(or a subset), from the input sequence, retrieved from the
database using its known run-time operand values.

C. Emulating an AES implementation using REVOLVER

SCAs on AES often exploit two algorithm vulnerabilities:
the first 16 bytes of the private key are used as-is in the first
round during encryption (or the last round during decryption),
and the addition of the key to the plaintext is on a per-byte
basis, as shown in Fig. 6. Therefore a SCA, when applied
successfully, targets key bytes one-by-one (16 x 28 guesses)
instead of targeting the whole key (2'?® guesses) at once. In
Fig. 5(b), the instructions of the first round AddRoundKey
and SubBytes operations that use the key and plaintext data
are depicted. If a subkey guess is correct, the power traces and
the calculated output of operation SubBytes are correlated.

We apply REVOLVER (Fig. 7) to emulate the run-time
values of operands, but we generate traces only for the
instructions shown in Fig. 5(b). The set of instructions is
small, therefore a database of instruction characterizations for
all possible run-time operand values can be generated with the
zero-step ICP sub-process (Fig. 7(b)). After characterization,
it is feasible to generate a power trace for any key/plaintext
combination of run-time values. An example of constructed
traces for a specific plaintext and two different keys is shown
in Fig. 8. Despite the differences of the traces, there are not
enough to identify keys by visually inspecting them. In the
next section, we examine a statistical SCA method.

(AES encryption Emulated Zero-Step ICP

Program (b)
{I, A, B}
’ AddRoundKey H Plaintext P ‘

SubBytes Measurements

\ J collected by
1 REVOLVER ICP

A’ Get ASM instruction sequence {Il,Iz,...,IN} ‘

|

Calculate intermediate operand (A, B) DB with

values for known K and P {I, A, B}
l measurements

I

Fig. 7: Zero-step execution emulation applied on AES.

Generate model trace
T ={L(A,B,) ... [\(AyBy) }

Execution Emulation (c

nm

— Key A
Key B

[l

el ([i
L

0 140

Instruction index

Fig. 8: Power traces from AES zero-step execution emulation.

IV. VULNERABILITIES IDENTIFICATION AND MITIGATION

A. Software security vulnerabilities: AES Key Recovery

A statistical SCA method, such as CPA [17], requires a
large set of power traces T to reveal a secret key K. A trace
is obtained during the encryption (or decryption) of a known
plaintext P using the secret key K. In our experiments, we
generate each trace in 7' using zero-step execution emulation
(Fig. 7) of the AES-128 encryption of a plaintext with a
secret key K. The number of plaintexts used for power traces
collection, which is equal to the size of set 7, is denoted as
Np. Next, we apply CPA on T in order to reveal the secret
key K used during the collection of power traces.

In Table I, we summarize the variables that affect the
generated power traces and the ability of CPA to reveal
keys. Nyeps is the number of times an instruction is repeated
during REVOLVER ICP (Fig. 2). To tune N,.c,s, we perform
an experiment where we use various values in the range
[10M, 1B] and examine the percentage of key bytes guessed
correctly, as shown in Fig. 9. The plaintexts number Np used
to collect power traces is examined in the range [0.1K, 10K].
Parameter M denotes the power sensor observed during zero-
step execution emulation. The results in this section are
obtained considering a Cortex-A72 victim core and collecting
measurements from the Cortex-A72 cluster power sensor.

TABLE I: Parameters affecting CPA efficiency

TABLE II: CPA efficiency for different cores and sensors

[Param][Description [Value |
Np Number of 16-byte 0.1K up to 10K
plaintexts to use.
Granularity of traces set T’
Number of times each 10M up to 1B
Nreps instruction is repeated
during REVOLVER ICP
M Utilized LPS Psys, Pata, Pass, Papu
g 100 e T e
o - -7
g 80 T T —o— s = 10M
2 70 T - Nyeps = 20M
S 60+ o7 /,/ reps =
2 7 =+ Nyeps = 50M
g 40+ e - —a— Nyeps = 100M
a P -
> 20 -~ e ®- Npeps=1B
i § ammmnt
£ 01T : :
10? 10° 104

Number of plaintexts (Np)

Fig. 9: CPA efficiency achieved for various N,.p,s and number
of plaintexts Np. Obtained through Cortex-A72 power sensor.

Fig. 9 shows how the efficiency of CPA on uncovering a
secret key K is affected by these parameters. The x—axis
depicts the number of plaintexts (and power traces) Np ex-
amined. The y-axis depicts CPA efficiency, which is evaluated
as the the percentage of key bytes revealed successfully out
of the 16 bytes of the AES-128 key. Each line is the CPA
efficiency for a different value of the NN,,s parameter. The
experiment is repeated for 10 different randomly generated
keys K, and the percentage is calculated over all keys. We
observe that the number of times an instruction is repeated
during characterization (NVyps) affects the performance of
CPA, which is attributed to the power per instruction accuracy
improvement achieved by ICP (Fig. 2). We also observe, as
expected, that as the number of plaintexts Np increases so
does the performance of CPA. In fact using only Np > 2000
plaintexts and N,..,, = 1B the keys are 100% successfully
revealed. Similarly, the keys are 100% revealed using Np >
5000 plaintexts and N;.¢ps = 50M.

B. Identifying hardware security vulnerabilities

So far we have presented results considering a Cortex-A72
victim core. Next, we examine different cores, but also differ-
ent power sensors. The CPA efficiency is shown in Table II for
two Cortex-A72 (columns 2, 3, 4 and 5) and two Cortex-A53
(columns 6, 7, 8 and 9) cores, using all power sensors. The
first column contains the LPS used (parameter M) from the
available power sensors (details presented in Sec. I1I-A). Each
row shows the CPA efficiency achieved when the collected
traces are obtained from the corresponding power sensor.
Parameter values are: N,.,s = 1B and Np € {500, 2000}.
Interestingly, we observe that by utilizing the GPU power
sensors, all subkeys are revealed successfully, which means
that there is a power side-channel leaking information from
the power domain of the cores towards the power domain of
the GPU, which is an actual hardware vulnerability of the
examined system identified by REVOLVER.

LPS AT2 (1) A72 (2) A53 (1) A53 (2)
Np — 500 2000 500 2000 500 2000 500 2000
Psys 16/16 | 16/16 10/16 | 16/16 15/16 11/16 0/16 0/16
Paro 16/16 | 15/16 6/16 | 16/16 0/16 4/16 0/16 0/16
Pass 16/16 | 16/16 0/16 0/16 9/16 0/16 1/16 2/16
Papu 16/16 | 16/16 16/16 | 16/16 14/16 | 16/16 16/16 | 16/16
R E——
3 %
z 804)
S . —o— Nyeps = 10M
> 609 / Nreps = 20M
£ 40 7 —e- Nyeps = 50M
> 204 / —— Nyeps = 100M
g / -~ Neeps=1B
R 0 %

o 25 o

Number of plaintexts (Np)

Fig. 10: CPA efficiency achieved for various N,¢ps and num-
ber of plaintexts Np. Obtained through GPU power sensor.

After identifying this hardware vulnerability, we repeat the
experiment presented in Fig. 9, but this time we use the
GPU power sensor instead of that of the Cortex-A72 cluster,
although the victim core is a Cortex-A72 core. The results
are depicted in Fig 10. Interestingly, we observe that CPA
efficiency reaches 100% using less than 200 plaintexts for
all examined N,.p, values. Note that only values from the
GPU LPS sensor are used to construct the set of power
traces T' processed by CPA. Clearly, there is a side-channel
between AES executed on the Cortex-A72 cluster and the
GPU. We attribute this side-channel to the cache coherency
circuitry available between the CPU clusters and the GPU
in our system. Using the REVOLVER framework, a security
engineer can identify such hardware vulnerabilities to power
SCAs and decide to deactivate (through the device tree) such
power sensors from a system or allow access to these sensors
only by trusted firmware.

C. Mitigation of vulnerabilities

In this paragraph, through a proof-of-concept example,
we show how a security designer can utilize the proposed
framework to design and evaluate their power SCA mit-
igation strategies. REVOLVER instruction-resolution power
traces allow for evaluating the instructions in our AES im-
plementation that contribute more towards revealing secrets by
comparing the maximum Pearson correlation coefficients of all
instructions in the power traces. In Fig. 11, we present these
coefficients for the correct key byte and four random incorrect
key bytes. Some instructions in the AES implementation are
more revealing than others. A security engineer can identify
these vulnerable instructions using the proposed REVOLVER
framework in order to design and evaluate an appropriate
mitigation strategy.

Our mitigation against the power SCA is based on arbitrary
computations re-ordering for the AES implementation. We
consider the AES AddRoundKey operation shown in Fig.
6. In the implementation of AES used in our experiments,
each byte of the internal state S is calculated in order, from

< I Incorrect key 1
% 0201 == Incorrect key 2
2
§0.15 A Correct key
S [Incorrect key 3
<
§010 [Incorrect key 4
=}
o
2 0.05
o
]

0.00

Instruction

Fig. 11: Pearson coefs. Correct vs incorrect AES key bytes.

0.254 d 0.254
- x Subkey guess - % Subkey guess
S Correct subke: V< S % Correct subke
So204 " x}'(* (a) « 2 0.201 (b) Y
& X x x X £
] Xy % X X X o
80151 X %X x xR X S 0.15

X X

5 X Wxx% L % 5
E 0.10 ;&xg oy % X E 0.10
L X x%o?g X2 x g
5 0.054 % % f‘: N X% Xy é 0.05

0.00 == T T T T T 0.00 = T T T T T

0 50 100 150 200 250 0 50 100 150 200 250
Subkey Subkey

Fig. 12: Pearson coefs. for all guesses of first AES key byte:
(a) without; and (b) with mitigation. N,p,=18B Np=10K.

S11,512, - - -, S44. The mitigation strategy is based on com-
puting the internal state bytes in an arbitrary order, therefore
leading to arbitrary mixing the power traces of the last 3
instructions, which reveal the key (Fig. 11). In Fig. 12, we
present the results before (Fig. 12 (a)) and after (Fig. 12
(b)) introducing our mitigation method, for a single AES key
byte. Each point is the maximum correlation coefficient of
the subkey guess byte with the set of traces 7' (the higher
the correlation, the more likely the guess is correct). The
correct subkey is annotated in red. This technique eradicates
the correlation between traces and subkey, thus mitigating the
SCA on the obtained traces.

V. CONCLUSION

We presented REVOLVER (Figs. 2 and 7), a software-
based framework that performs zero-step execution emulation
on ARMG64 and generates power traces with instruction-level
resolution (Fig. 8). REVOLVER is a hybrid emulator, because
part of it runs on the system that it emulates and evaluates
the power consumption of its emulated instructions using
measurements from on-chip power sensors that are already
present on many Arm-based chips. To improve the accuracy
of the collected traces, REVOLVER repeats the execution of
the instructions in a zero-step fashion. We demonstrated that
AES keys can be recovered by REVOLVER traces (Figs. 9,
10 and Table II) using Correlation Power Analysis (CPA),
which proves experimentally that there is a leaking power
side-channel in the examined system that could potentially be
exploited by power SCAs. Furthermore, we demonstrated how
REVOLVER can be used by a security engineer to identify
system vulnerabilities to power SCAs (Figs. 3, 4 and 11), and
to design and evaluate mitigation strategies (Fig. 12).

ACKNOWLEDGEMENTS

This work is co-financed by the European Regional De-
velopment Fund of the European Union and Greek na-
tional funds through the Operational Program “Competi-
tiveness, Entrepreneurship and Innovation”, under the call
RESEARCH-CREATE-INNOVATE (project code: T2EDK-
02836). The authors would like to thank Arm Research for
donating them the platform for conducting research on miti-
gation mechanisms for power-supply side-channel attacks.

REFERENCES

—

[1] “Specification for security management systems for the supply chain,”
Standard ISO 28000:2007, 2007.

[2] “Security techniques — extension to iso/iec 27001 and iso/iec 27002
for privacy information management — requirements and guidelines,”
Standard ISO/IEC 27701:2019, 2019.

[3] R. L. Rivest, CHAPTER 13 - Cryptography, ser. Handbook of Theoret-
ical Computer Science. Elsevier, Jan 1990, p. 717-755.

[4] Intel, “Intel® software guard extensions (intel® sgx).”

[5] A. Holdings, “Arm security technology: Building a secure system using
trustzone technology,” Retrieved on June, vol. 10, p. 2021, 2009.

[6] N. TEMPEST, “A Signal Problem,” Cryptologic Spectrum, vol. 2, 1972.

[71 P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin,
Heidelberg: Springer, 1999, pp. 388-397.

[8] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
Side—Channel(s),” in Cryptographic Hardware and Embedded Systems
- CHES 2002. Berlin, Heidelberg: Springer, 2003, pp. 29-45.

[9] A. Bortz and D. Boneh, “Exposing private information by timing web

applications,” in Proceedings of the 16th international conference on

World Wide Web, ser. WWW °07. New York, NY, USA: Association

for Computing Machinery, May 2007, pp. 621-628.

E. Biham and A. Shamir, “Differential fault analysis of secret key

cryptosystems,” in Advances in Cryptology — CRYPTO 97, B. S.

Kaliski, Ed. Berlin, Heidelberg: Springer, 1997, pp. 513-525.

A. Das, N. Borisov, and M. Caesar, “Do You Hear What I Hear? Fin-

gerprinting Smart Devices Through Embedded Acoustic Components,”

in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS "14. New York, NY, USA:

Association for Computing Machinery, Nov. 2014, pp. 441-452.

Y. Michalevsky, A. Schulman, G. A. Veerapandian, D. Boneh, and

G. Nakibly, “PowerSpy: Location tracking using mobile device power

analysis,” in 24th USENIX Security Symposium (USENIX Security 15).

Washington, D.C.: USENIX Association, Aug. 2015, pp. 785-800.

[13] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection

algorithms for keystroke dynamics,” in 2009 IEEE/IFIP International

Conference on Dependable Systems Networks, Jun. 2009, pp. 125-134.

K. Ramezanpour, P. Ampadu, and W. Diehl, “SCAUL: Power Side-

Channel Analysis With Unsupervised Learning,” IEEE Transactions on

Computers, vol. 69, no. 11, pp. 1626-1638, Nov. 2020.

P. Socha, V. Miskovsky, H. Kubatova, and M. Novotny, “Correlation

Power Analysis Distinguisher Based on the Correlation Trace Deriva-

tive,” in 2018 21st Euromicro Conference on Digital System Design

(DSD), Aug. 2018, pp. 565-568.

L. Batina, B. Gierlichs, and K. Lemke-Rust, “Differential Cluster

Analysis,” in Cryptographic Hardware and Embedded Systems - CHES

2009. Springer, 2009, pp. 112-127.

E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a

Leakage Model,” in Cryptographic Hardware and Embedded Systems -

CHES 2004. Springer, 2004, pp. 16-29.

[18] Z. Kou, W. He, S. Sinha, and W. Zhang, “Load-step: A precise trustzone
execution control framework for exploring new side-channel attacks like
flush+evict,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC), Dec 2021, p. 979-984.

[19] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “TruSense:
Information Leakage from TrustZone,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, Apr. 2018, pp. 1097-1105.

[20] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and

D. Gruss, “PLATYPUS: Software-based Power Side-Channel Attacks

on x86,” in 2021 IEEE Symposium on Security and Privacy (SP), May

2021, pp. 355-371, iSSN: 2375-1207.

[10]

[11]

[12]

[14]

[15]

[16]

[17]

